

- Includes sugars and polymers of sugars
- Contain a <u>carbonyl group</u> and many <u>hydroxyl groups</u>
 - Comprised of C, H, and O
- Monosaccharides: simple sugars
 - Molecular formulas with multiples of the unit CH₂O
 - Most common is glucose
 - Nutrients and fuel for cells
 - Used in cellular respiration
 - Can serve as building blocks for amino acids, or as monomers for diand polysaccharides

Disaccharides: **two** monosaccharides joined together by covalent bonds

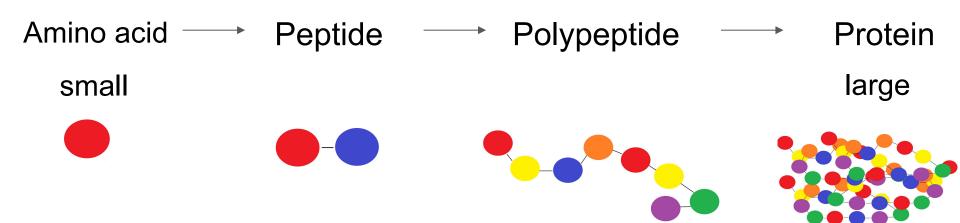
- Most common is sucrose
 - Monomers of sucrose: glucose and fructose
 - Plants transfer carbohydrates from roots to leaves in the form of sucrose

Polysaccharides: polymer with many sugars joined via dehydration reactions

Storage polysaccharides

- Plants store <u>starch</u> (polymer of glucose monomers)
 - Allows plants to store excess glucose
- Animals store <u>glycogen</u> (polymer of glucose)
 - Stored in liver and muscle cells

Structural polysaccharides


- Cellulose: tough substance that forms plant cell walls
- Chitin: forms exoskeleton of arthropods

Practice

- 1. You are given an unknown monosaccharide to identify in the lab. The only clue you are given is that it has 4 carbons. You (being an excellent AP bio student) figure out the formula. What is the unknown monosaccharide?
- Answer: C₄H₈O₄, Threose

Proteins

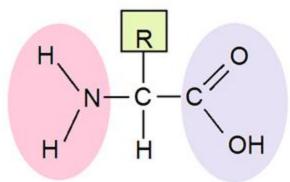
Formation of a Protein

Proteins

Protein: molecule consisting of polypeptides (polymers of amino acids) folded into a 3D shape

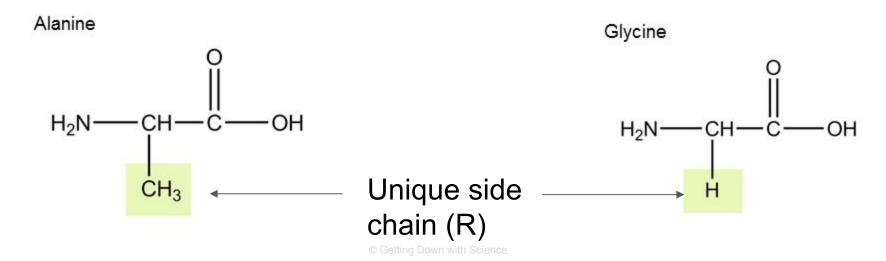
- Comprised of C, H, O, N, and S
- Shape determines <u>function</u>

Amino Acids


Molecules that have an amino group and a carboxyl group

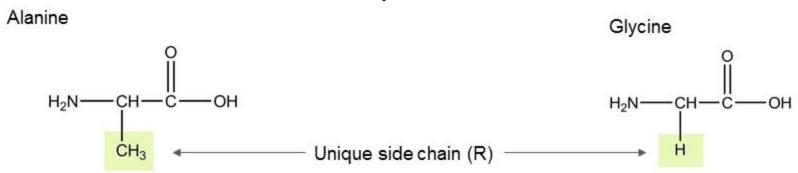
20 different amino acids

General Structure

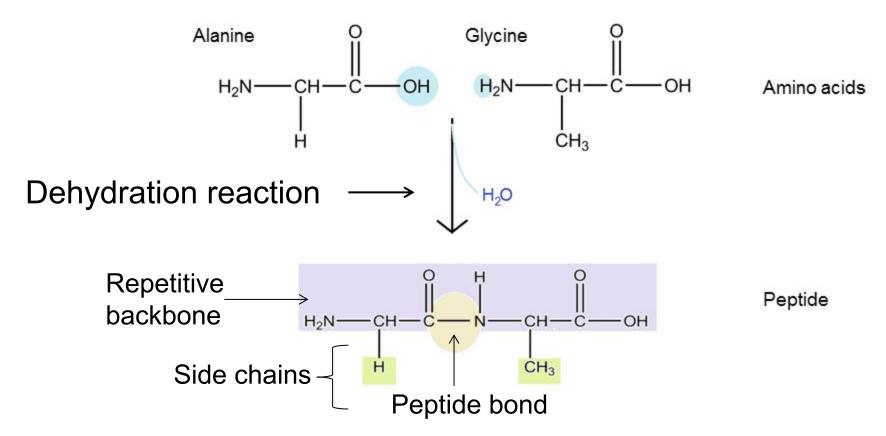

R = variable side chain

Amino group

carboxyl group


Examples:

Amino Acids


Each amino acid (AA) has a unique side chain

- Unique aspects of the AA are based on the side chain's physical and chemical properties
- Side chains can be grouped as:
 - Nonpolar (hydrophobic)
 - Polar (hydrophilic)
 - Charged/ionic (hydrophilic)
- Side chains interact, which determine the shape and function of the protein

Formation of Peptide Bonds

To form a peptide bond the <u>carboxyl</u> group of one AA must be positioned next to the <u>amino</u> group of another AA

Polypeptides

Polypeptides: many AA linked by peptide bonds

- Each polypeptide has a unique sequence of AAs and directionality
 - Each end is chemically unique
 - One end is a free amino group (N-terminus)
 - One end is a free carboxyl group (C-terminus)

Polypeptides

The sequence of AAs determines the 3D shape

Remember: SHAPE determines FUNCTION

 When a polypeptide twists and folds (because of R group interaction) it forms a protein

Quick! Think, pair share How is the unique sequence of AAs determined for a polypeptide?

Genes

Functions of Proteins

Function of proteins include:

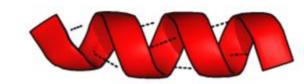
- Antibody-help protect the body from disease
- Enzyme- carry out chemical reactions or assist in creating new molecules
- Messenger- transmit signals (ie hormones)
- Structural- provide structure and support
- Transport/storage- bind to and carry small atoms and molecules through the body

Levels of Protein Structure

Primary

Linear chain of AA

- Determined via genes
- Dictates secondary and tertiary forms


Gly Pro Thr Gly Thr Gly Pro Cys Lys Ser Glu Leu Met Val Lys Val Leu

Secondary

Coils and folds due to hydrogen bonding within the polypeptide backbone

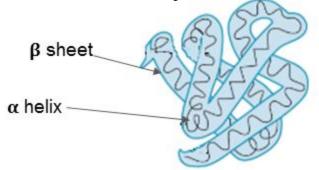
βpleated sheet- hydrogen bonds between polypeptide chains lying side by side

thelix- hydrogen bonding between every 4th AA

Levels of Protein Structure

Tertiary

3D folding due to interactions between the side chains of the AAs


- Reinforced by hydrophobic interactions and disulfide bridges of the side chains
 - The covalent bond formed between sulfur atoms of two cysteine monomers

Quaternary

Association of two or more polypeptides

 Found in only some proteins

All four levels of a protein's structure determine the protein's function

Practice

Let's work on the practice problems!

Practice

1. Cystic fibrosis is a serious, life-threatening disease that affects the lungs and digestive system of affected individuals. This disease results from the deletion of three nucleotides on the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene. This gene codes for a transmembrane protein that regulates ion channels in epithelial tissue. Provide an explanation for how this deletion could result in cystic fibrosis.

Nucleic Acids

Topic 6

Nucleic Acids

Nucleic acids: polymers made of nucleotide monomers

Function to:

Store, transmit and express hereditary information

Two forms:

- 1. Deoxyribonucleic acid (DNA)
- 2. Ribonucleic acid (RNA)

Components of Nucleic Acids

Nucleotides — Polynucleotides — Nucleic Acids

Nucleotides

Contain 3 parts:

- 1. Nitrogenous base
- 2. Five carbon sugar (pentose)
- 3. Phosphate group(s)

In polynucleotides each monomer only has one phosphate group

Nitrogenous Base

Two types: pyrimidines and purines

Pyrimidines: one ring with 6 atoms

Cytosine

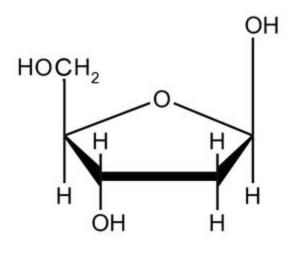
Thymine Only found in DNA
 Uracil Only found in RNA

Purines: one ring with 6 atoms bonded to one ring with 5

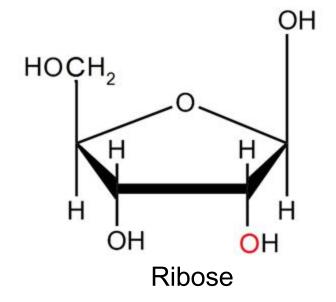
atoms

Adenine

Guanine

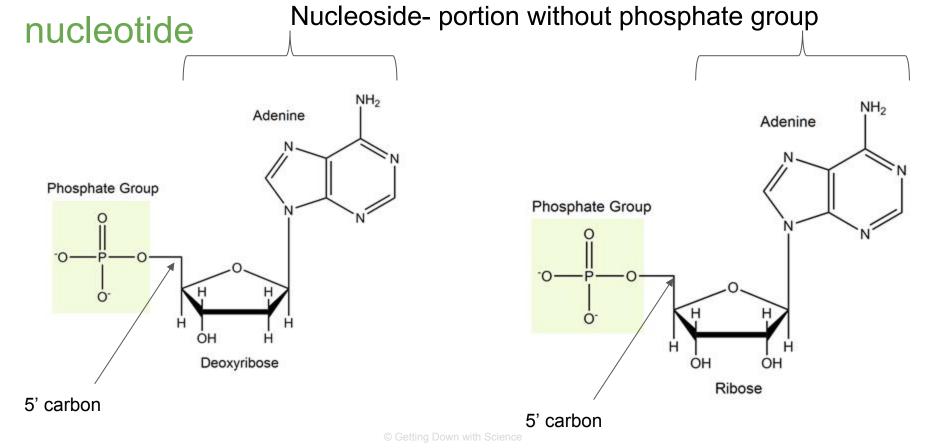

Five Carbon Sugar

A sugar is bonded to the base


In DNA the sugar is deoxyribose

In RNA the sugar is ribose

Differ in structure and function



Deoxyribose

Phosphate Group

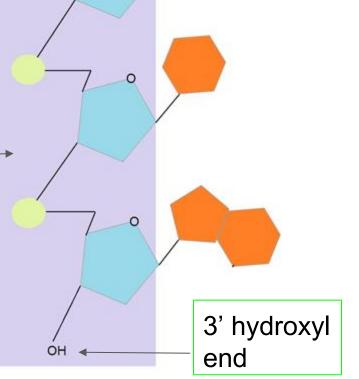
A phosphate group is added to the 5' carbon of the sugar (which is attached to the base) to form a

Polynucleotides

Phosphate groups link adjacent nucleotides

Phosphodiester linkage

- Directionality
 - o 5' to 3'


5' phosphate end

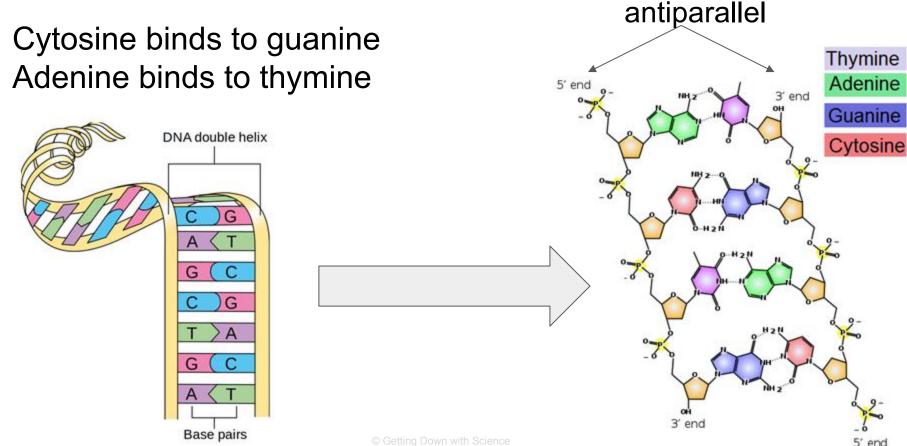
The sequence of bases along the DNA or mRNA is

unique for each gene

- Dictates AA sequence
 - Dictates primary structure of a protein
 - Dictates 3D structure of a protein

Sugar — phosphate backbone

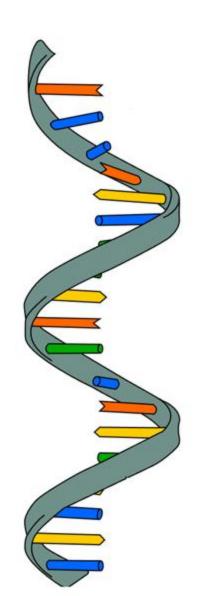
Nitrogenous


bases

© Getting Down with Science

DNA

Consists of two polynucleotides


- Forms a double helix
 - Strands are antiparallel
 - Held together by hydrogen bonds between bases

RNA

Single stranded polynucleotide

- Variable in shape
 - Due to base pairing within RNA
 - Adenine bonds to uracil
 - Cytosine bonds to guanine

Practice

- 1. You are given a segment of DNA:
 - o 5'- CATGTCAAC-3'

What is the complimentary strand?

Answer: 3'-GTACAGTTG-5'

Practice

Let's work on the practice problems!

Lipids

Lipids

<u>Lipids</u>: class of molecules that <u>do not</u> include true <u>polymers</u>

- Generally small in size
 - Often not considered to be a macromolecule
- Lipids are nonpolar-hydrophobic

Types of lipids:

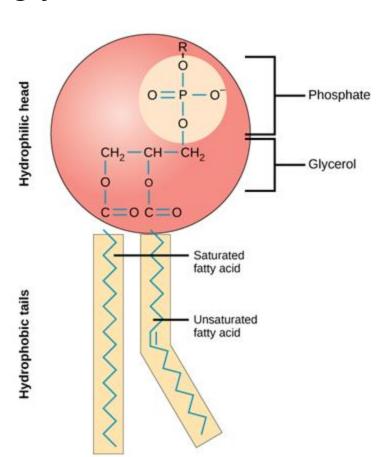
- 1. Fats
- 2. Phospholipids
- 3. Steroids

Fats

Fats are composed of glycerol and fatty acids Glycerol: classified as an alcohol (hydroxyl groups) Fatty acids: long carbon chains (carboxyl group at one end)

- 3 fatty acids join to a glycerol via ester linkage
 - Bond between a hydroxyl and carboxyl group
- Classified as a saturated fatty acid or an unsaturated fatty acid
 - Saturated fatty acid: <u>no double bonds</u> between carbons in the carbon chain = more hydrogen (think: saturated with hydrogen)
 - Unsaturated fatty acid: contains one or more double bonds

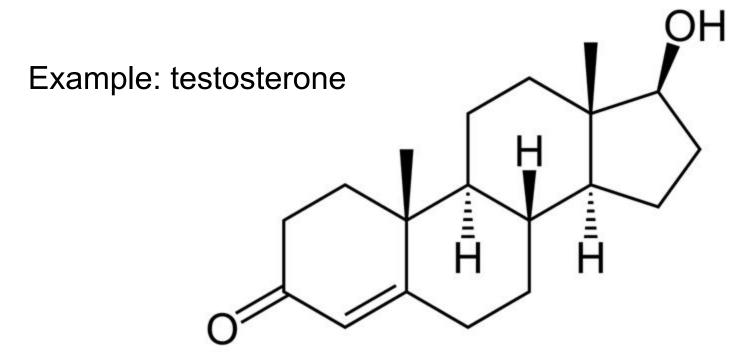
Phospholipids


Major component of cell membranes

Two fatty acids attached to a glycerol and a

phosphate

Assemble as a bilayer in H₂O


- Tails are hydrophobic
- Head is hydrophilic

Steroids

Lipids that have four fused rings

 Unique groups attached to the ring determine the type of steroid

Putting it all together

Fill out this chart with the appropriate responses

Macromolecule	Elements involved	Monomer (sub-unit)	Polymer
Carbohydrates	Carbon, hydrogen, oxygen	monosaccharide	Polysaccharide
Proteins	Carbon, hydrogen, oxygen, nitrogen, sulfur	Amino acids	Polypeptides
Lipids	Carbon, hydrogen, oxygen (phosphorus for phospholipids)	Glycerol and fatty acids	Does not contain true polymers
Nucleic Acids	Carbon, hydrogen, oxygen, nitrogen, phosphorus	Nucleotides	DNA, RNA

© Getting Down with Science